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9 Abstract Controlling invasive species is a highly

10 complex problem defined by the biological character-

11 istics of the organisms, the landscape context, and a

12 management objective of minimizing invasion dam-

13 ages given limited financial resources. While bio-

14 economic optimization models provide a promising

15 approach for invasive species control, current spatio-

16 temporal optimization models omit key ecological

17 details such as age structures—which could be essen-

18 tial to predict how populations grow and spread

19 spatially over time and determine the most effective

20 control strategies. We develop a novel age-structured

21 optimization model as a spatial-dynamic decision

22 framework for controlling invasive species. In par-

23 ticular, we propose a new carrying capacity sub-

24model, which allows us to take into account the

25biological competition among different age classes

26within the population. The potential use of the model

27is demonstrated on controlling the invasion of sericea

28(Lespedeza cuneata), a perennial legume threatening

29native grasslands in the Great Plains. The results show

30that incorporating age-structure into the model cap-

31tures important biological characteristics of the

32species and leads to unexpected results such as

33multi-logistic population growth with multiple, se-

34quential, and overlapping phases of logistic form.

35These new findings can contribute to understanding

36time-lags and invasion growth dynamics. Additional-

37ly, given budget constraints, utilizing control mea-

38sures every 2–3 years is found to be more effective

39than yearly control because of the time to reproductive

40maturity. Results of the bio-economic optimization

41approach provide both ecological and economic

42insights into the control of invasive species. Further-

43more, while the proposed model is specific enough to

44capture biological realism, it also has the potential to

45be generalized to a wide range of invasive plant and

46animal species under various management scenarios

47in order to identify the most efficient control strategies

48for managing invasive species.
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54 Introduction

55 Controlling species invasions at the landscape scale is

56 a highly complex problem. First, the rates of spread

57 and impact on native communities are critically

58 dependent on life span, growth rates, dormant stages,

59 and dispersal, which may not be captured by simple

60 population growth functions (Gurevitch et al. 2011).

61 Second, landscapes are heterogeneous, and invasions

62 often do not follow simple patterns of spread from a

63 given introduction point (Schreiber and Lloyd-Smith

64 2009; With 2002). Third, available resources (time

65 and money) are almost always limited. When these

66 factors are combined, intuitively determining the most

67 efficacious control strategy quickly becomes in-

68 tractable. For this reason, optimization models of

69 invasion control that explicitly incorporate limited

70 budgets can be useful decision tools to analyze the

71 potential consequences of different control strategies

72 (for a detailed review of these studies, see, e.g., Olson

73 2006; Epanchin-Niell and Hastings 2010; Billionnet

74 2013).

75 Although bio-economic optimization models for

76 invasion control are not new (Clark 1990), advances in

77 optimization and computational power offer new

78 opportunities to incorporate much greater ecological

79 realism than previously possible. Several optimization

80 models demonstrate the importance of spatio-tempo-

81 ral processes when controlling invaders (Bhat et al.

82 1993; Hof 1998; Hof and Bevers 2002; Albers et al.

83 2010; Blackwood et al. 2010; Kaiser and Burnett

84 2010; Büyüktahtakın et al. 2011; Epanchin-Niell and

85 Wilen 2012; Kovacs et al. 2014). While the progress in

86 spatial–temporal modeling is encouraging, the real

87 potential for such models remains under-utilized,

88 because those models omit key ecological details

89 such as age structures—which could be essential to

90 forecast how populations grow spatially over time and

91 determine the most effective control strategies. In this

92 paper, we present a novel age-structured optimization

93 model as a spatial-dynamic decision framework for

94 controlling invasive species, and demonstrate the

95 potential use of the model for controlling the invasion

96 of sericea (Lespedeza cuneata), a perennial legume

97 threatening native grasslands in the Great Plains. In

98 particular, we develop a new carrying capacity sub-

99 model, which allows us to take into account the

100 biological competition among different age classes

101 within the population. The results demonstrate that

102incorporating age-structure into the model captures

103important biological characteristics of the species and

104lead to unexpected results such as multi-logistic

105population growth (see Appendix S1). These new

106findings can contribute to understanding time-lags and

107invasion growth dynamics thus provide new insight

108into controlling invaders.

109We include the age structure of invasive species in

110the model because reproduction and survival vary with

111plant age. The simplest age-structured model is the

112Leslie Model (Leslie 1945), where the population is

113divided into discrete age classes. Structured models

114include age-, weight-, stage-, and size-structured

115models (see, e.g., Getz and Haight 1989; Caswell

1162001; Taylor and Hastings 2004). Among all these

117possible structuring alternatives, we consider an age-

118structured model of the invasive species control

119because, for many species, reproduction and survival

120rate differ with age (see, e.g., Woods et al. 2009). The

121seed stage is particularly important because seeds can

122either germinate quickly or form a long-term seed

123bank, which builds a reservoir of potential propagules

124that can increase future weed infestations (Wu 2001).

125Our model is unusual in that it accounts for density,

126frequency, age, dispersal, and seed bank dynamics of

127the invaders simultaneously in a spatio-temporal

128landscape to determine the optimal placement and

129timing of invasion control.

130Here, population growth is formulated considering

131the germination of seeds from the seed bank and

132dispersed seeds, as opposed to the use of a logistic

133growth function, which is a central assumption in

134previous invasion control models. The seed bank-

135based linear growth model contributes to the opti-

136mization of spatio-temporal population dynamic mod-

137els by significantly improving its solvability compared

138to non-linear logistic growth counterparts while

139maintaining much greater biological complexity than

140other logistic or constant growth models. Furthermore,

141the model incorporates different seed production and

142loss rates by dividing the population into different age

143classes, and it tracks the growth of each age class over

144a multi-period time horizon. Incorporating seed bank

145growth and age structure into the model provides

146insight into population growth patterns, which is found

147to be more complex than the simple logistic growth

148(Stone 1980) and has important implications for

149control strategies.
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150 We also consider uncertainty in our deterministic

151 model by performing sensitivity analysis of different

152 uncertain parameters such as budget, treatment effi-

153 cacy, and dispersal rate. In addition, we examine

154 model solutions in order to provide the minimum

155 necessary level of resources (labor and budget) that

156 could efficiently control the invader under different

157 initial population distribution scenarios. Finally, we

158 evaluate the effectiveness of different treatment

159 frequency strategies for controlling invasion damages.

160 Materials and methods

161 Bio-economic model of invasive species control

162 The bio-economic model is formulated as follows: Let

163 T denote the time horizon, and let t [[0, T] be any year

164 of the planning horizon. The area consists of rectan-

165 gular cells with I rows and J columns. Any cell can be

166 characterized by its coordinates (i, j), where i[{1, 2,…, I}

167 and j[{1, 2,…, J}. The decision variable xi,j(t) is

168 defined as the percent of area treated in cell (i, j) in

169 year t.

170 In order to incorporate different seed production

171 rates for different age groups, we define age groups

172 (classes) k = 1, 2, 3,…, n?, where each age group

173 k defines a class of k year(s)-old species population,

174 except that age group n? includes the n-year-old and

175 older population. Therefore, for individuals that reach

176 maturity at the age of n, where n can be any number

177 depending on the species, transition population den-

178 sities in cell (i, j) are formulated as

NPk
i;j t þ 1ð Þ ¼ dqSBi;j tð Þ k ¼ 1 and 8i; j; t ð1Þ

180180 NPk
i;j t þ 1ð Þ ¼ NAk�1

i;j tð Þ 1� uk�1ð Þ
k ¼ 2; . . .; n� 1 and 8i; j; t ð2Þ

182182 NPk
i;j t þ 1ð Þ ¼ NAk�1

i;j tð Þ 1� uk�1ð Þ ð3Þ
þ NAk

i;j tð Þ 1� ukð Þ;
k ¼ nþ and 8i; j; t

184184 where d is the seed germination rate, q is the survival

185 rate of plants after becoming a seedling, SBi,j(t) is a

186 function representing seed bank population at time t,

187 uk is the loss rate of individuals when age class

188 k grows into age class k ? 1, NAk
i;j tð Þ is the population

189after treatment for the age class k at the beginning of

190time period t, and NPk
i;j t þ 1ð Þ represents the potential

191population for age class k in cell (i, j) at the beginning

192of time period t ? 1 before carrying capacity is

193considered.

194Equation (1) gives the number of one-year-old

195individuals at the beginning of period t ? 1 that have

196germinated from the seed bank in time period t and

197become seedlings. Equation (2) denotes the transi-

198tion population levels of individuals that are

199k = 2,…, n - 1 years old at the beginning of period

200t ? 1 and were subject to individual losses at rate

201uk-1 due to seasonal changes and ecological factors

202in period t. Equation (3) provides the number of

203n?-year-old individuals at the beginning of period

204t ? 1, which are n - 1 and n? years old and exposed

205to individual losses at rate un-1 and unþ , respective-

206ly, in period t.

207Here, we consider an invasive plant that disperses

208only through seeds. It is assumed that some of the

209seeds will be dispersing to eight adjacent cells, and

210some of them will remain within the cell. Define Mij as

211the set of eight adjacent cells of a cell (i, j), where

212Mij = {(i ? 1, j ? 1), (i ? 1, j), (i, j ? 1), (i–1, j–1),

213(i–1, j), (i, j–1), (i–1, j ? 1), (i ? 1, j–1)}.

214We then formulate the seed dispersal to cell (i,j)

215from its surrounding eight neighbors (h, w)[Mij as

SDi;j tð Þ ¼ k
Xn

k¼1

X

h;wð Þ2Mij

S kð ÞNAk
h;w tð Þ 8i; j; t ð4Þ

217217where k is the proportion of seeds produced in

218neighboring cells that disperse to cell (i, j) in period

219t, S(k) is the number of seeds produced by one

220individual of age class k, and NAk
h;w tð Þ is the number of

221the individuals of age class k in the surrounding cell

222(h,w)[Mij following treatment. Equation (4) gives the

223total number of seeds dispersed from eight surround-

224ing cells to cell (i, j).

225The number of seeds remaining in cell (i, j) after

226dispersal is then given as

Seedi;j tð Þ ¼ h
Xn

k¼1

NAk
i;j tð ÞS kð Þ; 8i; j; t ð5Þ

228228where h ¼ 1� 8k is the proportion of locally pro-

229duced seeds that remain in cell (i, j). Equation (5)

230gives the total number of seeds produced in cell (i, j),

231after dispersal.
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232 After seed production by each individual, seeds

233 can germinate, experience mortality from pathogens

234 or seed predators, or become dormant, thus forming

235 a seed bank. Hence, the longevity (viability) rate of

236 seeds, which is defined by the percentage of seeds

237 in the seed bank that remain viable over time, and

238 the germination rate are important factors that must

239 be considered when modeling the seed bank

240 population. Therefore, the number of seeds in the

241 seed bank in cell (i, j) at time t, SBi,j(t) is formulated

242 as

SBi;j tð Þ ¼
Xt

s¼0

c� dð Þt�s
SDi;j sð Þ þ Seedi;j sð Þ
� �� �

þ SBi;j 0ð Þ c� dð Þt 8i; j; t ð6Þ

244244 where c and d represent the longevity rate and

245 germination rate of seeds in the seed bank, respec-

246 tively. Equation (6) indicates that the seed bank

247 population in cell (i,j) at time t includes seeds

248 dispersing from the surrounding cells (SDij(.)), seeds

249 that are produced but not germinated within the cell

250 (Seedi,j(.)), and the initial seed bank population

251 (SBij(0)). Note that SDij(s) and Seedij(s) are given in

252 Eqs. (4) and (5), respectively. Also note that in

253 Eq. (6), the seed bank population has a compound

254 increasing rate depending on the longevity and

255 germination rate of the seeds, which decays as time

256 passes.

257 Although invasive species commonly produce

258 many offspring, natural boundaries, soil characteris-

259 tics, and ecological factors constitute barriers for total

260 population in a given cell so that the population cannot

261 exceed the carrying capacity of cell (i, j), Ki,j, which is

262 the maximum density (number of individuals) in cell

263 (i, j) (for alternatives see Appendix S2). Therefore, the

264 actual individual population before treatment, NBk
i;j tð Þ,

265 is formulated as

NBk
i;j tð Þ ¼ min NPk

i;j tð Þ;Ki;j

n o
; k ¼ nþ and 8i; j; t

ð7Þ

267267

NBk
i;j tð Þ ¼

0 if Ki;j�
Pnþ

a¼kþ1

NBa
i;j tð Þ� 0;

min Ki;j�
Pnþ

a¼kþ1

NBa
i;j tð Þ

� �
;NPk

i;j tð Þ
� �

otherwise

8
>>><

>>>:

k ¼ 1. . .nþ � 1 and 8i; j; t
ð8Þ

269269Equations (7) and (8) ensure that previously estab-

270lished plants occupy cell (i,j) before younger

271individuals do. If the cell population does not reach

272carrying capacity by the individuals of age class n?,

273the second-oldest class adds to the population up to

274the carrying capacity. This cycle continues until the

275population reaches the maximum population level in

276each cell. In particular, Eq. (7) allows the model to

277give priority to the oldest age class n? in a given

278cell (i,j). If the transition population of the oldest

279individuals in cell (i,j) is more than the carrying

280capacity, the before-treatment population of the

281oldest individuals will be set to the carrying

282capacity; otherwise, it will be set to their transition

283population. Once the oldest age class n? is given

284priority, the model allows age class n? - 1,

285n? - 2,…, 1 to occupy the remaining space from

286the age class n?, respectively. The first part of

287
Eq. (8) 0 if Ki;j �

Pnþ

a¼kþ1

NBa
i;j tð Þ� 0

� �
states that if

288the carrying capacity in cell (i, j) is reached by

289individuals at age class older than k, kth (and younger)

290age class will not be able to populate cell (i, j). The

291second part of the Eq. (8) indicates that the before-

292treatment population of the kth age class will be set to

293the minimum of the remaining space available or the

294transition population of the kth age class.

295In the case of treatment, the before-treatment

296population is multiplied by the factor 1� xxi;j tð Þ
� �

297where x is the treatment efficacy, and xi;j tð Þ 2 0; 1½ � is
298a decision variable representing the percentage area

299treated in cell (i, j) in year t. Therefore, the

300population after treatment for age class k, NAk
i;j tð Þ,

301is calculated by

NAk
i;j tð Þ ¼ NBk

i;j tð Þ 1� xxi;j tð Þ
� �

8k; i; j; t ð9Þ

303303The treatment in each time period t is limited by

304available budget for treatment and labor. Therefore,

305the budget constraint becomes

XI

i¼1

XJ

j¼1

Ci;j þ Hi;j

� �
xi;j tð Þ�B tð Þ 8t ð10Þ

307307where Ci,j is the treatment labor cost per cell (i, j),

308Hi,j is the specific (e.g., herbicide) cost of treatment

309per cell (i, j), and B(t) is the available budget for

310treatment and labor at time period t. Equation (10)
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311 ensures that the total amount of a budget spent for

312 treatments in a period t cannot exceed the available

313 budget in period t.

314 The objective of the model is to minimize the total

315 economic damages caused by the invasive species

316 population in all cells and all periods of the planning

317 horizon. The objective function is then formulated as

Minimize z ¼
XI

i¼1

XJ

j¼1

XT

t¼1

Di;j tð Þ ð11Þ

319319 where Di,j(t) represents the damage as an economic

320 loss due to invasion in cell (i, j) at the beginning of

321 time t. The term Di,j(t) is given as

Di;j tð Þ ¼ Ei;j tð Þ
Pn

k¼1 NAk
i;j tð Þ

Ki;j
; 8i; j; t ð12Þ

323323 where Ei,j(t) represents the economic value of cell (i,j).

324 The total sum of individuals at different age classes

325 represents the total population in cell (i,j) at the

326 beginning of time period t. In Eq. (12), the loss of

327 economic value in cell (i, j) is proportional to the ratio

328 of the total population with respect to carrying

329 capacity, Ki,j, in that cell.

330 Case study: control of sericea invasion in the Great

331 Plains

332 Sericea is a drought-tolerant legume that can grow in a

333 range of soil types, produces copious seeds, and has a

334 long-lived seed bank (Ohlenbusch et al. 2007). Sericea

335 was declared a noxious weed by the Kansas Depart-

336 ment of Agriculture in 2000, has spread over

337 2,226,337 ha of the mid- to southern Great Plains

338 (Duncan et al. 2004), and has led to $29 million

339 average annual forage loss in the Flint Hills region of

340 Kansas (Fechter and Jones 2001). Furthermore, this

341 legume replaces the native species in grasslands and

342 threatens biodiversity in the Great Plains. Although

343 herbicides can effectively eradicate established plants,

344 populations can quickly recover from control strate-

345 gies by germination from the seed bank. Given the

346 biological characteristics of sericea and limited finan-

347 cial resources, determining the most effective long-

348 term control strategy is difficult without the use of

349 complex response models. Our bio-economic opti-

350 mization model provides decision strategies regarding

351 where and when limited funds can be best allocated for

352effective control of invasions by applying a restricted

353budget across a 15-year planning horizon.

354The objective of the model is to minimize

355economic loss from haying and grazing due to sericea

356invasion. A gridded landscape is utilized to represent

357the spatially heterogeneous growth, spread, damage,

358and control costs. In this case study, we represent the

359initial invasion on a 10 9 10 landscape (40 ha),

360where each cell represents 0.4 ha of land. We examine

361responses using population maps reflecting three

362different frequency levels, representing the percent-

363age of invaded areas of the gridded landscape—at 2 %

364(low), 40 % (medium), and 80 % (high)—and three

365different abundance rates defining species population

366in each cell—such as U[1–20] (low), U[21–200]

367(medium), and U[201–2000] (high), where U[a–b]

368denotes an integer number drawn uniformly from the

369interval [a, b] (Table 1). Therefore, nine different

370maps, each defined by a combination of three

371frequency and three abundance levels of the species,

372could be generated. However, for the sake of

373conciseness, the model is applied to the most repre-

374sentative five cases, which include extreme and

375average cases, and provide sufficient information

376regarding computational analysis: low frequency and

377low abundance (L–L), low frequency and high

378abundance (L–H), medium frequency and medium

379abundance (M–M), high frequency and low abun-

380dance (H–L), and high frequency and high abundance

381(H–H). Each case is a randomly generated initial

382population distribution, as shown in the first column

383of Fig. 2 (Maps a1–f1). Note that ten different maps

384are randomly generated for each of the five cases.

385Therefore, we utilize 50 maps and present the average

386results of ten maps for each case in each computa-

387tional simulation (Figs. 1, 2, 3, 4, 5, 6).

388Along with the initial population structure, we

389present model parameters with their symbols, units,

390and case study values (Table 1), in order to demon-

391strate the general behavior of the model. Sericea

392ramets generally start to produce seeds after two

393growing seasons, with the majority of ramets produc-

394ing seed in year three. Using the information from

395Schutzenhofer and Knight (2007) and Woods et al.

396(2009), we estimate seed production as 45 and 900 per

397ramet for two- and three-year-old ramets, respectively.

398Therefore, we divide the sericea population into one-,

399two-, and three?-year-old age classes in order to
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400 incorporate different plant mortality and seed produc-

401 tion rates for each age class. Based on this model, one-

402 year-old ramets become two-year-old ramets, and

403 two-year-old ramets become three-year-old ramets

404 with a loss rate of 22 and 9 %, respectively, while

405 three-year-old and older ramets remain in the three?

406 age class with a loss rate of 4 % each year. The loss

407 rate decreases each year until a ramet reaches maturity

408 because the mortality risk presumably decreases as

409 plant size increases (Schutzenhofer and Knight 2007).

410 Survival rate q is assumed to be 90 %, which is the

411 percentage of seedlings that are able to survive after

412 germination. The case study focuses on the economic

413impact of sericea invasion in grasslands found in the

414central Great Plains of North America. However, this

415application could be adjusted to different land types

416and competition against existing vegetation by reduc-

417ing the survival rate of seedlings or increasing the loss

418rates of one-year old ramets based on the density of

419initial existing vegetation.

420Although most sericea seeds disperse very near the

421maternal plant, some will disperse to surrounding

422areas by natural disturbances such as wind, animal,

423and human interaction (Houseman unpublished data).

424Therefore, seed dispersal from cell (i,j) to the

425surrounding eight cells is estimated by a dispersal

Table 1 Initial population structure and parameters

Description Frequency (%) Category

Percentage of cells invaded in 10 9 10 landscape 2 Low frequency

40 Medium frequency

80 High frequency

Description Abundance Category

Initial population of sericea ramets in one cell U[1–20] Low abundance

U[21–200] Medium abundance

U[201–2000] High abundance

Model parameter Symbol Units Case study values References

Loss rate from age cluster k to k ? 1 u(k) – 22, 9, 4** % 1

Number of seeds produced per ramet per age cluster k S(k) – 0, 45, 900 2

Percentage of seed dispersal k – 0.01, 0.1*, 1 % 3

Percentage of remaining seeds h – 99.92, 99.2, 92 % 3

Longevity rate c – 95 % 3

Germination rate d Seedlings/seeds 6.8 % 4

Survival rate of seedlings q – 90 % 5

Carrying capacity Kij Ramets/0.4 ha 1,936,000 4

Treatment efficacy of herbicides x – 90, 95, 99 % 6

Labor cost Cij $/0.4 ha $3.25 3

Herbicide cost Hij $/0.4 ha $10.50 6

Budget allotted to control sericea in year t B(t) $ [0, 1400]

Revenue from hay – $/0.4 ha $306 7

Revenue from forage – $/0.4 ha $81.71 7

1, Schutzenhofer et al. (2009); 2, Woods et al. (2009); 3, Expert opinion; 4, Houseman et al. (2014); 5, Houseman unpublished data;

6, Lance et al. (1997); 7, K-State (2012)

* Underlined parameter values that correspond to percentage of seed dispersal, percentage of remaining seeds, and treatment efficacy

of the herbicide represent reasonable baseline parameter values, which are derived from the related literature and based on expert

opinion. The values to the left and right of the italicized parameters are used for sensitivity analysis in order to analyze the behavior

of the model in extreme cases

** Values separated by commas regarding ‘‘Loss rate from age cluster k to k ? 1’’ and ‘‘Number of seeds produced per ramet per age

cluster k’’ represent case study values for 1, 2 and 3? years old age classes
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Fig. 1 Field-level invasion by sericea for three age classes over

45 years in the absence of control measures under initial

conditions consisting of a low frequency and low abundance

(L–L), b low frequency and high abundance (L–H), c medium

frequency and medium abundance (M–M), d high frequency

and low abundance (H–L), and e high frequency and high

abundance (H–H)
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426 constant k = 0.1 % in the baseline scenario. We

427 assume that there are no seeds in the seed bank at the

428 beginning of year 1. Based on field experiments, the

429 carrying capacity is set to 1,936,000 ramets per cell

430 considering various conditions including competition

431 with other vegetation (Houseman et al. 2014). We set a

432 constant carrying capacity without differentiating

433 among age clusters because field experiments show

434 that most of the plants will be mature (at the 3?-year-

435 old cluster) when the carrying capacity is reached.

436 In our model, some proportion of sericea ramets

437 will be eradicated from each cell, depending on the

438 effectiveness of the herbicide treatment. The treatment

439 efficacy is set to an average value of 95 % in the

440 baseline scenario (Lance et al. 1997). Moreover, the

441 treatment cost of each cell (i, j) depends on the labor

442 and herbicide cost, which is estimated as $3.25 (expert

443 opinion) and $10.50 (Lance et al. 1997), respectively.

444 The objective function minimizes the total economic

445 loss (damage) caused by sericea over all cells of the

446 grid for 15 years. Sericea invasion significantly

447 reduces the economic value from haying and grazing

448 in the Great Plains. Assuming that the expected land

449 use involves both haying and grazing equally, damage

450 is computed as the average revenue from haying and

451 grazing multiplied by the proportion of the total

452 sericea population with respect to the carrying

453 capacity.

454 Given the input data (Table 1), the proposed

455 mathematical model is solved using ‘‘CONOPT,’’ a

456 solver for large-scale nonlinear optimization (NLP)

457 problems, in AMPL (Fourer et al. 2003) through the

458 Internet-based NEOS (Network-Enabled Optimiza-

459 tion System) Dell PowerEdge R420 server with a 29

460 Intel Xeon X5660 at 2.8 GHz (12 cores total) CPU and

461 64.0 GB memory (Czyzyk et al. 1998). The algorithm

462 used in CONOPT is based on the Generalized

463 Reduced Gradient (GRG) algorithm and preferable

464 for models with high degrees of nonlinearity and also

465 where feasibility is difficult to reach (Drud 1985). In

466 this paper, due to the complexity of the problem, we

467 employ a rolling horizon approach, where the NLP

468 model is solved for each period, and then the resulting

469 population density at each cell is used as an initial

470 condition for the next period’s problem.

471 In order to analyze the model’s response and

472 behavior in extreme cases, we run the model under

473 different values for some uncertain parameters such

474 as budget, treatment effectiveness, and dispersal,

475considering their potential range. For example, in

476our model, the expected treatment effectiveness is set

477at 95 %. However, based on the data, we have an

478upper and lower bound defining the treatment effec-

479tiveness range. Therefore, we find the solution for the

480upper and lower bounds and the mean value of

481possible treatment effectiveness one at a time by fixing

482all the remaining parameters to their expected values.

483Likewise, the dispersal rate can be affected by wind,

484animal, and human activity. Therefore, we solve the

485model for the extreme values of the dispersal rate to

486determine the impact of dispersal under these

487situations.

488Results

489In this section, we present the results of five different

490computational simulations and sensitivity analyses.

491By solving the model with CONOPT, the optimal

492results for a $0 budget level for all cases were achieved

493in less than 550 CPU seconds, and the optimal results

494for all other budget levels for all cases were achieved

495in less than 150 CPU seconds.

496Part a: Growth behavior of different age groups

497over 45 years

498In the first computational simulation, we analyze

499yearly population changes of sericea without herbicide

500treatment by observing the growth of one-, two-, and

501three?-year-old ramets on a 10 9 10 landscape for

502five different initial populations with different fre-

503quencies and abundances for 45 years (Fig. 1).

504In the M–M, H–L, and H–H cases (Fig. 1c–e), the

505growth of sericea follows a bi-logistic growth form,

506where there are two distinct phases, each with a

507logistic pattern as proposed by Meyer (1994). On the

508other hand, in the L–L and L–H cases (Fig. 1a, b), the

509growth of sericea follows a multi-logistic growth

510(Meyer et al. 1999) with multiple, sequential and

511overlapping phases of simple logistic form (see

512Appendix S1). Here, multi-logistic growth represents

513a growth function that includes serial, overlapping

514logistic phases, in which a successive section of the

515multi-logistic curve shows a slowing rate of growth as

516the population approaches the carrying capacity and

517finally saturate when carrying capacity is reached

518(Fig. 1a, b). For example, in Fig. 1a (L–L case), a
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Fig. 2 Maps of plant spread with and without treatment, and

treatment locations. The rows a–f represent different initial

frequency and abundance scenarios (L–H: low frequency–high

abundance, L–L: low frequency–high abundance, M–M:

medium frequency–medium abundance, H–H: high frequency–

high abundance) and the population abundance either with or

without treatment while the columns represent different time

steps in years (t)
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519 logistic growth function or a growth phase is observed

520 from year 9 to year 14, while another logistic function

521 occurs from year 13 until year 18. Over a few decades,

522 the multiple logistic growth functions dampen and

523 show an asymptotic behavior. Note that we observe

524only two logistic growth phases in the M–M, H–L, and

525H–H cases, because carrying capacity is reached in

526these cases faster than the L–L and L–H cases.

527In Fig. 1, we also observe that in all cases, the

528population of one- and two-year-old ramets is oscillating
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Fig. 3 Maps of plant spread without treatment. The rows

a–e represent different initial frequency and abundance

scenarios (L–L: low frequency–high abundance, L–H: low

frequency–high abundance, M–M: medium frequency–medium

abundance, H–H: high frequency–high abundance) and the

population abundance without treatment while the columns

represent different time steps in years (t)
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529 in time due to higher loss rates than older stages and

530 limitations imposed by the carrying capacity, whereas

531 the population of three?-year-old ramets is increasing

532 monotonically each year until carrying capacity is

533 reached. This observed pattern of sericea growth can

534 explain the multi (bi)-logistic behavior on a landscape

535 with variation in the initial frequency and density of

536 invasion among cells. Because reproduction is high and

537 dispersal distance is limited, cells that have sericea plants

538 quickly reach carrying capacity, while establishment

539 into unoccupied cells is relatively slow. At the entire

540 landscape scale, this translates into a multi-logistic rather

541 than a smooth logistic pattern. Our computational tests

542 also confirm that spatial progression of the sericea

543 population growth has the largest impact on the observed

544 oscillations during logistic growth. This response is also

545 consistent with the responses of the different age classes.

546 For example, at low-frequency invasion, the contribution

547 of the first two age groups is high until newly occupied

548 cells reach carrying capacity, at which point the three?-

549 year-old age class becomes dominant, and the one- and

550 two-year-old age classes start to diminish. Because new

551 cells on the landscape are occupied, a spike in the one-

552 and two-year-old age classes occurs followed by a shift

553 to the three?-year-old age class forming a logistic growth

554 phase. For landscapes with moderate- to high-frequency

555 invasion (Fig. 1c, e), this spike in one- and two-year-old

556 age classes is much higher, and we observe fewer growth

557 phases than for landscapes with low-frequency invasion.

558 Part b: Plant spread with and without treatment,

559 and treatment locations

560 In Fig. 2, maps a1–a4 represent the plant spread

561 without treatment for L–H at t = 0, 5, 10, and 15

562 respectively, while maps b1–f4 represent initial

563 population distribution at t = 0 and treatment loca-

564 tions at t = 5, 10, and 15 for L–H, L–L, M–M, H–L,

565 and H–H, respectively, for a $300 budget allocation

566 each year. In Fig. 3, maps a1–f4 represent the initial

567 population distribution at t = 0 and the plant spread

568 without treatment at t = 5, 10, and 15 for the L–L, L–H,

569 M–M, H–L, and H–H cases, respectively.

570 Maps b1–b4 in Fig. 2 suggest that in the L–H case,

571 applying herbicide treatment in more cells with full

572 and partial treatment results in less economic damage

573 than applying treatment to fewer cells with only full

574 treatment. On the other hand, applying full treatment

575 to fewer cells with the highest invasion is the

576preferable method as the frequency and abundance

577of the invasion increases. Results show that full and

578partial treatment should both be considered as a

579treatment strategy in the early years of L–L and L–H

580cases, in order to decrease the yearly economic loss. It

581is clearly seen from the maps of L–H cases (with and

582without treatment) that, although we apply treatment

583every year, the spread of sericea is inevitable unless

584100 % of the ramets with seed production capability

585are eradicated. Any of the invaded cells is a potential

586treatment area, depending on budget availability.

587Due to the seed bank, which is explicitly considered

588in the model, plant regeneration will take place every

589year as long as seeds remain viable in the soil. Results

590suggest that the treatment locations change over time

591for each different abundance and frequency level cases

592(Figs. 2, 3). For many cases, treatment is applied to

593locations with the highest invasion in an effort to

594optimally allocate a limited budget. However, closely

595looking at these figures, (e.g., c3 of Fig. 2 (with

596treatment) and a3 of Fig. 3 (without treatment)), the

597optimal solution does not always choose to treat the

598largest patches first; instead, in this case (in year 10), it

599follows a strategy to treat locations that surrounds the

600heavily invaded location. This strategy might be due to

601an effort of the model to confine invaded locations

602instead of treating them. This result implies that

603providing general recommendations and simple rule-

604of-thumb strategies may not be optimal for all cases.

605Maps f3 and f4 of Fig. 2 show that treated cells are

606the same in t = 10 and t = 15. This occurs because

607the entire landscape in H–L and H–H cases reach

608carrying capacity earlier compared to L–L, L–H, and

609M–M (Figs. 2, 3). Once a cell reaches carrying

610capacity in H–L and H–H cases at any time point,

611sericea quickly recovers from herbicide treatment, and

612carrying capacity is reached again in the following

613year due to the rapid growth from seed bank. The same

614cells are treated every year after the tenth year in the

615H–H case, since changing the location of the treatment

616does not change the overall damage.

617Part c: Impact of treatment efficacy on economic

618damages

619Given the patterns of population growth without

620control measures, we examine the budget necessary

621to control invader growth. Figure 4 illustrates the

622tradeoff between the cost of control measures and
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Fig. 4 Tradeoff between average yearly damages and bud-

get allocation for different treatment efficacies over 15 years
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623 economic damage. Because the effectiveness of the

624 treatment is uncertain due to year-to-year variation or

625 the care with which herbicide is applied, we perform

626 sensitivity analysis on different values of the treatment

627 efficacy (90, 95, and 99 %) to analyze their impact on

628 the yearly economic damage for different budget

629 levels over 15 years (Fig. 4).

630 While a budget level of $0.1 thousand is sufficient

631 for the L–L and L–H cases (Figs. 4a, b), $1 thousand,

632 $0.8 thousand, and $0.6 thousand are required to

633 completely eradicate the sericea population for 90,

634 95, and 99 % treatment efficacies, respectively, in the

635 M–M case (Fig. 4c). The necessary budget increases

636 to $0.7 thousand for the 99 % treatment efficacy in the

637 H–L case (Fig. 4d).

638 In the H–H case (Fig. 4e), sericea is eradicated with

639 a budget allocation of $1 thousand for a 99 %

640 treatment efficacy but the necessary budget for

641 eradication increases to $1.3 thousand for a 95 %

642 treatment efficacy. Here, a budget allocation of

643 $1 thousand for a 90 % treatment efficacy will lead

644 to a damage level less than $0.05 thousand but is not

645 sufficient to completely eradicate the sericea popula-

646 tion due to the widespread seed bank and the

647 remaining few three?-year-old ramets, which poten-

648 tially generate an enormous amount of seeds that will

649 add to the population in the following years.

650 Part d: Impact of dispersal rate on economic

651 damages

652 Since the dispersal rate is potentially sensitive to

653 variation in wind, animal, and human activity, we also

654 perform sensitivity analysis on the impact of different

655 spread rates (0.01, 0.1, and 1 %) on the yearly damage

656 for different budget levels over 15 years. For each of

657 these dispersal scenarios, the control costs (yearly

658 budget on x-axis in Fig. 5) and the resulting economic

659 damage are inversely related. When the dispersal rate

660 level is increased from 0.1 to 1 %, the increase in the

661 average yearly damage is equal to $1.15 thousand for the

662 L–L case, and $0.41 thousand for the H–L case under no

663 treatment (budget allocation = 0 on x-axis in Fig. 5).

664 Furthermore, although the average yearly damage in the

665 H–H case is more than the average yearly damage in the

666 M–M case for all budget allocations, the impact of

667 dispersal rates on the average yearly damage is more

668 apparent in the M–M case. This occurs because seeds are

669 more likely to spread to already-invaded cells in the H–H

670case than the M–M case, and the former is closer to the

671carrying capacity than the latter.

672Part e: Impact of different treatment strategies

673on economic damages

674We also examine the impact of three different

675treatment frequency strategies—every year (1-year),

676every 2 years (2-year), and every 3 years (3-year)—on

677the average yearly and total (cumulative) damages

678over 15 years (Fig. 6). Computational tests are con-

679ducted by equally allocating a total treatment budget

680of $4.5 thousand for every year ($0.3 thousand), every

6812 years ($0.56 thousand), and every 3 years ($0.9 t-

682housand) of the 15-year period, starting with treatment

683from the beginning of year 1.

684Without treatment, the total damage increases from

685$15.2 thousand to $206.6 thousand by year 15, and all

686strategies reduce damage considerably, compared to no

687treatment in all cases (Fig. 6). In the L–L and L–H cases,

688the 1-year and 2-year strategies are the two best options,

689while the 3-year treatment strategy results in higher

690yearly and total damages (Fig. 6a, b). On the other hand,

691for the M–M case, the 2-year treatment strategy is more

692beneficial than the 1-year treatment (Fig. 6c). Here, less

693frequent control measures allow more of the population

694to be treated than the 1-year approach, and—because the

695recovery of the invader in a cell requires at least

6962 years—the benefit of treating larger areas less

697frequently exceeds that of smaller areas treated more

698frequently. In other words, the immediate and higher

699reduction in total population that is the result of using the

7002-year treatment approach is more beneficial than the

7011-year approach, even though the economic damage as a

702result of the 2-year strategy exceeds the economic

703damage of the 3-year strategy in some years.

704Results for the H–L and H–H cases suggest that the

7053-year strategy will result in the lowest total costs over

706a 15-year period (Fig. 6d, e). The sericea population

707reaches carrying capacity earlier in the H–H case,

708compared to the other four cases, due to its high initial

709abundance. After the carrying capacity is reached, the

710$0.9 thousand budget allocation compensates for

711damage in the previous years in the 3-year treatment

712strategy and thus causes less total damage at the end of

713year 15. On the other hand, the 1-year treatment results

714in more consistent damage levels than the 2-year and

7153-year treatment strategies, which have substantial

716year-to-year variation in damages.
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Fig. 5 Tradeoff between average yearly damages and bud-

get allocation for different dispersal rates over 15 years under

initial conditions consisting of a low frequency and low

abundance (L–L), b low frequency and high abundance

(L–H), c medium frequency and medium abundance (M–M),

d high frequency and low abundance (H–L), and e high

frequency and high abundance (H–H). Values are non-zero near/

at high values on x-axis. Note differences in y-axis scale
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717 Discussion

718 We present a novel spatio-temporal dynamic model,

719 which integrates biological models into a decision

720 theory framework, while incorporating seed bank and

721 dispersal, different age classes, growth rates, treatment

722 costs, budget, and relevant economic loss. Unlike

723 previous spatial–temporal methods (for a detailed

724 discussion of these methods, see, e.g., Billionnet

725 2013), here the growth of the invasive population

726 within each cell is modeled using the seed bank and

727 influenced by the invasion state of neighboring cells,

728 while the population is divided into classes of different

729 age groups in order to reflect different seed production

730 and loss rates of each age group into the model.

731 Numerical results provide insights into biological

732 growth and spread behavior of the species, in addition

733 to strategies addressing relevant management questions.

734 The first key result is that the population growth

735 response of sericea is more complex than simple

736 logistic growth. In fact, the population follows a multi

737 (bi)-logistic growth form, where there are multiple

738 (two) distinct phases, each with a logistic pattern. Our

739 results support Meyer’s contention (1994) that the bi-

740 logistic is useful in representing the growth of many

741 systems that contain complex growth processes that

742 are not well modeled by the simple logistic function.

743 Here, we observe logistic phases of growth where in

744 the first half of each phase, the first two age groups are

745 dominant, and in the second half, the three?-year-old

746 age class becomes dominant, until carrying capacity is

747 reached. Computational simulations show that the

748 multi-logistic behavior could only be observed in a

749 spatio-temporal model as proposed in this paper. The

750 observed oscillations could be explained by the fast

751 reproduction behavior of sericea, which allows it to

752 reach the local carrying capacity quickly and then to

753 start with a new establishment in surrounding newly

754 arrived locations. The local growth of the species

755 progresses spatially over time, and thus logistic

756 growth phases are repeated until the entire landscape

757 is invaded.

758 According to Cook (1965), although not typically

759 examined, logistic growth of a population may undergo

760 oscillations of one type or another, for many reasons

761 including frequency related to age structure and time-

762 lag effects. Introduced species commonly exhibit a lag-

763 phase in which the non-native species remains at low

764 abundance for an extended time before increasing

765exponentially (Aikio et al. 2010). Several proposed

766hypotheses suggest that this pattern results from

767genotypic, demographic, or extrinsic factors (Pysek

768and Hulme 2005). The multi (bi)-logistic response

769pattern exhibited by our model suggests that demo-

770graphic factors may explain short-term lag-patterns

771and, when coupled with variation in extrinsic factors,

772may contribute to longer-term lag patterns. Such insight

773would not be possible with more simplistic models that

774ignore the biological detail included in our model and is

775likely to be relevant to other species with high seed

776production and persistent seed banks. Furthermore, the

777multi (bi)-logistic population growth pattern suggests

778that the timing of control measures may have stronger

779or weaker effects on the invader, depending on when

780treatment is applied.

781It is interesting to note that although multiple

782logistic behavior is observed in many complex

783systems such as social diffusion and social change

784(Fokas 2007) and forecasting of technology change

785and short product lifecycles (Kucharavy and De Guio

7862011; Trappey and Wu 2008), to our knowledge, this

787has never been shown before in an ecological context,

788either empirically or computationally. The empirical

789and theoretical community should consider when such

790variation (multi-logistic) might be important for

791invasive species control. For example, under what

792conditions is it important to model multi-logistic

793rather than logistic population growth when attempt-

794ing to develop effective control strategies? Such

795questions are particularly relevant when searching

796for optimal solutions constrained by economic re-

797sources—as we attempt to do in this paper.

798Second, given a target goal, the model addresses

799efficient management strategies regarding the follow-

800ing: (1) how large the allocated yearly budget needs to

801be, (2) the size of the infestation and where treatments

802should be targeted, and (3) how often treatments should

803be applied to be effective. In this paper, computational

804results demonstrate growth responses for three age

805classes under no-treatment, plant spread and treatment

806locations, tradeoffs between damage and budget levels,

807and the minimum required resources that must be

808allotted to alleviate the spread of sericea under various

809treatment and management scenarios.

810Third, we perform sensitivity analysis with respect

811to treatment efficacy and seed dispersal parameters to

812analyze the impact of uncertainty on the model outputs

813and observe the model behavior for extreme scenarios.
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814 Not surprisingly, the higher the treatment efficacy, the

815 lower the damage levels, but interestingly, the impact of

816 different treatment efficacies becomes clearer as the

817 frequency levels increase. Such analyses illustrate the

818 potential tradeoffs between the cost of treatment and its

819 effectiveness for different initial population conditions.

820 For example, by comparing the marginal (extra) cost

821 with the marginal economic damage reduction benefit

822 of using a more effective herbicide, managers decide

823 whether to invest in the herbicide or not. Note that while

824 we consider the most effective herbicide treatment and

825 the corresponding cost in the sericea treatment case, the

826 bio-economic model can also be extended to include

827 various herbicide types or control strategies with their

828 related costs. The results of this experiment also suggest

829 that the average yearly damage increases as the

830 dispersal rate increases for all budget levels and cases,

831 but the dispersal rate has a higher impact for low-

832 frequency initial population distributions than high-

833 frequency initial invasions. Thus, a key component of

834 invader control is the prevention of seed dispersal by

835 reducing human and animal interaction.

836 Next, we evaluate three treatment timing strate-

837 gies—1-year, 2-year, and 3-year—that could be used

838 by managers, and we compare them with each other as

839 well as the no-treatment option. Results suggest that

840 effectiveness of the control strategy is highly depen-

841 dent on initial population levels. With a limited

842 budget, it is better to treat yearly if the initial

843 population abundance and frequency is low, while it

844 may be better to apply treatment every second or third

845 year (with a higher per-treatment budget amount)

846 when the frequency and abundance are high (Fig. 6).

847 In this paper, we address uncertainty by performing

848 sensitivity analyses on different stochastic parameters

849 such as budget, treatment efficacy, and dispersal rate.

850 However, if the probability distributions of uncertain

851 parameters are known or can be estimated, those

852 parameters could be directly incorporated into the

853 optimization model by defining them as random

854 variables. The resulting stochastic nonlinear model

855 could then be solved using stochastic optimization

856 algorithms or heuristic approaches. Furthermore, for

857 the application of the proposed model, we selected a

858 spatial and temporal scale that was relevant to land-

859 scapes but was small enough to be tractable given the

860 complexity of the model and current computational

861 capacity. Future work could address issues of scale by

862 employing advanced optimization approaches.

863Our model could be utilized by a central planner

864who determines control actions with the minimum

865damage across multiple or private ownerships with

866respect to a shared budget and other constraints.

867Future research may include compensation of multi-

868ple owners under central decision-making or coordi-

869nation of management among multiple decentralized

870decision-makers using game theoretic approaches

871(Büyüktahtakın et al. 2013; Forgó et al. 1999).

872Furthermore, if difficulties, including the quantifica-

873tion and formulation of ecological damages and

874preferences of stakeholders, are solved, this research

875could be extended to considering multiple objectives

876of different stakeholders including economic and

877ecological damages.

878Our spatio-temporal approach can be extended to

879any species for which age structure is relevant such

880as fish, insects, mammals, and plants (see, e.g.,

881Fazekas et al. 1997; Koji and Nakamura 2006;

882Tahvonen 2008; Shelton et al. 2012). For example,

883model Eqs. (1)–(3) that represent age-structured

884growth can be adjusted to model the growth of

885stage- or size-structured species, while seed gen-

886eration and seed bank-based growth Eqs. (4)–(6) can

887be adjusted to model dormancy and various offspring

888generation, accumulation, and dispersal mechanisms.

889Furthermore, carrying capacity Eqs. (7), (8) can be

890adjusted to estimate the population abundances of

891different stage and size groups given carrying ca-

892pacity limitations.

893Results of the bio-economic optimization approach

894illustrate the potential for new optimization approach-

895es that incorporate demographic detail and spatio-

896temporal realism for invasive species control into a

897single-decision framework. Furthermore, while the

898proposed model is specific enough to capture biolo-

899gical realism, it also has the potential to be generalized

900to a wide range of invasive plant and animal species

901under various management scenarios in order to

902identify the most efficient control strategy for manag-

903ing invasive species over large, heterogeneous land-

904scapes and long time periods.
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961 Forgó F, Szép J, Szidarovszky F (1999) Introduction to the
962 theory of games. Concepts, methods, applications. Kluwer,
963 Dordrecht
964 Fechter RH, Jones R (2001) Estimated economic impacts of the
965 invasive plant sericea lespedeza on Kansas grazing lands.
966 J Agric Appl Econ 33:630
967 Fourer R, Gay DM, Kernighan BW (2003) AMPL: a modeling
968 language for mathematical programming, Duxbury Press,
969 Brooks/Cole-Thomson Publishing Company, Pacific
970 Grove, CA

971Getz WM, Haight RG (1989) Population harvesting: Demo-
972graphic models of fish, forest and animal resources
973Monographs in Population Biology, vol 27. Princeton
974University Press, Princeton
975Gurevitch J, Fox GA et al (2011) Emergent insights from the
976synthesis of conceptual frameworks for biological inva-
977sions. Ecol Lett 14(4):407–418
978Hof J (1998) Optimizing spatial and dynamic population-based
979control strategies for invading forest pests. Nat Resour
980Model 11:197–216
981Hof J, Bevers M (2002) Spatial optimization in ecological ap-
982plications. Columbia University Press, New York
983Houseman G, Foster B, Brassil CE (2014) Propagule pressure-
984invasibility relationships: testing the influence of soil fer-
985tility and disturbance with Lespedeza cuneata. Oecologia
986174(2):511–520
987Kaiser BA, Burnett KM (2010) Spatial economic analysis of
988early detection and rapid response strategies for an invasive
989species. Resour Energy Econ 32:566–585
990Kansas State University (2012) 2012 Chemical weed control,
991SRP1063. http://www.atchison.ksu.edu/doc39521.ashx.
992Accessed 19 Jan 2014
993Koji S, Nakamura K (2006) Seasonal fluctuation, age structure,
994and annual changes in a population of Cassida rubiginosa
995(Coleoptera: Chrysomelidae) in a natural habitat. Ann
996Entomol Soc Am 99:292–299
997Kovacs KF, Haight RG, Mercader RJ, McCullough DG (2014)
998A bioeconomic analysis of an emerald ash borer invasion
999of an urban forest with multiple jurisdictions. Resour En-
1000ergy Econ 36:270–289
1001Kucharavy D, De Guio R (2011) Logistic substitution model and
1002technological forecasting. Procedia Eng 9:402–416
1003Lance TV, Terrence GB, Stritzke J (1997) Ecology and man-
1004agement of Sericea Lespedeza. http://pods.dasnr.okstate.
1005edu/docushare/dsweb/Get/Rendition-7591/PSS-2874web
1006?color.pdf. Accessed 19 Jan 2014
1007Leslie PH (1945) The use of matrices in certain population
1008mathematics. Biometrika 33(3):183–212
1009Meyer PS (1994) Bi-logistic growth. Technol Forecast Soc
1010Change 47:89–102
1011Meyer PS, Yung JW, Ausubel JH (1999) A Primer on logistic
1012growth and substitution: the mathematics of the Loglet lab
1013softwar. Technol Forecast Soc Change 61(3):247–271
1014Ohlenbusch DP, Bidwell T, Fick H, Scott W, Clubine S, Coffin M
1015et al (2007) Sericea Lespedeza: history, characteristics, and
1016identification. Kansas State University Agricultural Experiment
1017Station, Cooperative Extension Service, Manhattan
1018Olson LJ (2006) The economics of terrestrial invasive species: a
1019review of the literature. Agric Resour Econ Rev 35(1):
1020178–194
1021Pysek P, Hulme PE (2005) Spatio-temporal dynamics of plant
1022invasions: linking pattern to process. Ecoscience 12(3):
1023302–315
1024Schreiber SJ, Lloyd-Smith JO (2009) Invasion dynamics in
1025spatially heterogeneous environments. Am Nat
1026174(4):490–505
1027Schutzenhofer MR, Knight TM (2007) Population-level effects
1028of augmented herbivory on Lespedeza cuneata: implica-
1029tions for biological control. Ecol Appl 17(4):965–971
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